L1C_band_composition.py 21.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
# -*- coding: utf-8 -*-

import os
import os.path as op
import otbApplication
import find_directory_names
import glob
import json
import shutil
import subprocess
import tempfile


        
def create_composit_band(bands_full_paths, out_tif, resolution = 60, composit_type = 'ND'):
    ''' Create a composition of multiple bands. Their order is important !!!
    The composition type is defined below
    '''
    tmp_name = next(tempfile._get_candidate_names())
    temp0 = op.join('tmp', 'band1_{}.tif'.format(tmp_name))
    temp1 = op.join('tmp', 'band2_{}.tif'.format(tmp_name))

    resize_band(bands_full_paths[0], out_band = temp0, pixelresX = resolution, pixelresY = resolution)
    resize_band(bands_full_paths[1], out_band = temp1, pixelresX = resolution, pixelresY = resolution)
    
    temp_bands_full_paths = [str(temp0), str(temp1)]
    
    # Normalized Difference between band 1 and 2
    if composit_type == 'ND':
        if len(bands_full_paths) != 2:
            print('Impossible to continue: 2 bands needs to be given for the ND')
        else:
            BandMathX = otbApplication.Registry.CreateApplication("BandMathX")
            BandMathX.SetParameterStringList("il", temp_bands_full_paths)
            BandMathX.SetParameterString("out", str(out_tif))            
            # TODO : verify that it works with the additional 0.01
            # Should avoid having NaN in the result
            #~ BandMathX.SetParameterString("exp", "5000*(im1b1-im2b1)/(0.01+im1b1+im2b1)")
            BandMathX.SetParameterString("exp", "(im1b1-im2b1)/(0.01+im1b1+im2b1)")
            BandMathX.UpdateParameters()
            BandMathX.ExecuteAndWriteOutput()

    # Difference between 1 and 2 
    if composit_type == 'D':
        if len(bands_full_paths) != 2:
            print('Impossible to continue: 2 bands needs to be given for the D')
        else:
            BandMathX = otbApplication.Registry.CreateApplication("BandMathX")
            BandMathX.SetParameterStringList("il", temp_bands_full_paths)
            BandMathX.SetParameterString("out", str(out_tif))
            BandMathX.SetParameterString("exp", "(im1b1-im2b1)")
            BandMathX.UpdateParameters()
            BandMathX.ExecuteAndWriteOutput()

    # Ratio between 1 and 2 
    if composit_type == 'R':
        if len(bands_full_paths) != 2:
            print('Impossible to continue: 2 bands needs to be given for the R')
        else:
            BandMathX = otbApplication.Registry.CreateApplication("BandMathX")
            BandMathX.SetParameterStringList("il", temp_bands_full_paths)
            BandMathX.SetParameterString("out", str(out_tif))
            BandMathX.SetParameterString("exp", "(im1b1+0.01)/(im2b1+0.01)")
            BandMathX.UpdateParameters()
            BandMathX.ExecuteAndWriteOutput()



            
def create_specific_indices(in_bands_dir, out_tif, indice_name, resolution = 60):
    if indice_name == 'NDVI':
        band1 = glob.glob(op.join(in_bands_dir, '*08.jp2'))[0]
        band2 = glob.glob(op.join(in_bands_dir, '*04.jp2'))[0]
        bands_full_paths = [band1, band2]
        create_composit_band(bands_full_paths, out_tif, resolution = resolution, composit_type = 'ND')

    elif indice_name == 'NDWI':
        band1 = glob.glob(op.join(in_bands_dir, '*03.jp2'))[0]
        band2 = glob.glob(op.join(in_bands_dir, '*08.jp2'))[0]
        bands_full_paths = [band1, band2]
        create_composit_band(bands_full_paths, out_tif, resolution = resolution, composit_type = 'ND')
        
    elif indice_name == 'NDCI':
        band1 = glob.glob(op.join(in_bands_dir, '*08.jp2'))[0]
        band2 = glob.glob(op.join(in_bands_dir, '*04.jp2'))[0]
        bands_full_paths = [band1, band2]
        create_composit_band(bands_full_paths, out_tif, resolution = resolution, composit_type = 'ND')        

    elif indice_name == 'NDSI':
        band1 = glob.glob(op.join(in_bands_dir, '*03.jp2'))[0]
        band2 = glob.glob(op.join(in_bands_dir, '*11.jp2'))[0]
        bands_full_paths = [band1, band2]
        create_composit_band(bands_full_paths, out_tif, resolution = resolution, composit_type = 'ND')   

    else:
        print('Please enter a valid indice name')




def create_time_difference_band(global_parameters, band_num, out_tif, resolution = 60):
    '''
    Create a TIF being the difference between the cloudy date and the clear date
    The band_num is the number of the band of interest
    '''
    location = global_parameters["user_choices"]["location"]
    current_date = global_parameters["user_choices"]["current_date"]
    clear_date = global_parameters["user_choices"]["clear_date"]
    
    current_dir, current_band_prefix, current_date = find_directory_names.get_L1C_dir(location, current_date, display = False)
    clear_dir, clear_band_prefix, clear_date = find_directory_names.get_L1C_dir(location, clear_date, display = False)

    band_num_str = '{:02d}'.format(band_num)
    
    # search the two files
    band1 = glob.glob(op.join(current_dir, (current_band_prefix + band_num_str + '.jp2')))[0]
    band2 = glob.glob(op.join(clear_dir, (clear_band_prefix + band_num_str + '.jp2')))[0]        
    bands_full_paths = [band1, band2]
    # make the difference
    create_composit_band(bands_full_paths, out_tif, resolution = resolution, composit_type = 'D')    

    return
    
    
def create_ratio_bands(global_parameters, in_bands_dir, out_dir_bands, resolution = 60):
    '''
    Create TIF being the ratio between different bands, defined in the global_parameters
    '''
   
    ratios = global_parameters["features"]["ratios"]
    out_names = ['ratio_{}.tif'.format(r) for r in ratios]
    out_paths = [op.join(out_dir_bands, n) for n in out_names]
    
    for k, ratio in enumerate(ratios):
        # for all the ratios to compute
        band1_string = '{:02d}'.format(int(ratio.split('_')[0]))
        band2_string = '{:02d}'.format(int(ratio.split('_')[1]))

        band1 = glob.glob(op.join(in_bands_dir, '*{}.jp2'.format(band1_string)))[0]
        band2 = glob.glob(op.join(in_bands_dir, '*{}.jp2'.format(band2_string)))[0]
        out_tif = out_paths[k]

        bands_full_paths = [band1, band2]
        create_composit_band(bands_full_paths, out_tif, resolution = resolution, composit_type = 'R')  
    
    return out_paths
    
    
def create_contours_density(in_tif, in_channel, out_tif, radius = 3, resolution = 60):
    '''
    Create a contours density feature from a band
    '''
    tmp_name = next(tempfile._get_candidate_names())
    temp_tif = op.join('tmp', 'band_for_contours_density_{}.tif'.format(tmp_name))
    resize_band(in_tif, out_band = temp_tif, pixelresX = resolution, pixelresY = resolution)
    
    # Compute the contours of the image
    EdgeExtraction = otbApplication.Registry.CreateApplication("EdgeExtraction")
    EdgeExtraction.SetParameterString("in", str(temp_tif))
    EdgeExtraction.SetParameterInt("channel", int(in_channel))
    EdgeExtraction.SetParameterString("filter", "gradient")
    EdgeExtraction.UpdateParameters()
    EdgeExtraction.Execute() 
    
    # Mean and others moments of the contours
    LocalStatisticExtraction = otbApplication.Registry.CreateApplication("LocalStatisticExtraction")
    LocalStatisticExtraction.SetParameterInputImage("in",EdgeExtraction.GetParameterOutputImage("out"))
    LocalStatisticExtraction.SetParameterInt("channel", 1)
    LocalStatisticExtraction.SetParameterInt("radius", radius)
    LocalStatisticExtraction.UpdateParameters()
    LocalStatisticExtraction.Execute() 
    
    # Only take the mean (1st channel)
    MeanOnly = otbApplication.Registry.CreateApplication("BandMathX")
    MeanOnly.SetParameterString("out", str(out_tif))
    MeanOnly.AddImageToParameterInputImageList("il",LocalStatisticExtraction.GetParameterOutputImage("out"))
    MeanOnly.SetParameterString("exp", "im1b1")
    MeanOnly.UpdateParameters()
    MeanOnly.ExecuteAndWriteOutput()  
    
def create_variation_coeff(in_tif, in_channel, out_tif, radius = 3, resolution = 60):   
    '''
    Create a texture variation coeff feature
    '''
    tmp_name = next(tempfile._get_candidate_names())
    temp_tif = op.join('tmp', 'band_for_contours_density_{}.tif'.format(tmp_name))
    resize_band(in_tif, out_band = temp_tif, pixelresX = resolution, pixelresY = resolution)
    
    # Mean and others moments of the contours
    LocalStatisticExtraction = otbApplication.Registry.CreateApplication("LocalStatisticExtraction")
    LocalStatisticExtraction.SetParameterString("in", str(temp_tif))
    LocalStatisticExtraction.SetParameterInt("channel", int(in_channel))
    LocalStatisticExtraction.SetParameterInt("radius", radius)
    LocalStatisticExtraction.UpdateParameters()
    LocalStatisticExtraction.Execute() 
    
    # Variation coeff is the variance over the mean
    MeanOnly = otbApplication.Registry.CreateApplication("BandMathX")
    MeanOnly.SetParameterString("out", str(out_tif))
    MeanOnly.AddImageToParameterInputImageList("il",LocalStatisticExtraction.GetParameterOutputImage("out"))
    MeanOnly.SetParameterString("exp", "sqrt(im1b2)/im1b1")
    MeanOnly.UpdateParameters()
    MeanOnly.ExecuteAndWriteOutput()        
    


def compose_bands_heavy(bands_full_paths, out_tif):
    ''' Create a TIF with all the specified bands
    /!\ can be a heavy file
    '''
    if not op.exists(op.dirname(out_tif)):
        os.makedirs(op.dirname(out_tif))
        print(op.dirname(out_tif) + ' created')

    # write the origin of each band in a .txt file
    # to track where they come from
    file_out = open((out_tif[0:-4] + '_bands.txt'), 'w')
    b = 0 # band number
    bands_text = []    
    for band in bands_full_paths:
        bands_text.append(str(band)) # band path  
        b +=1 # band number
        file_out.write(('B{} : '.format(b) + band + '\n'))
    file_out.close()
    
    # Stack all the bands into one TIF
    print('  Creation of the main TIF heavy')
    ConcatenateImages = otbApplication.Registry.CreateApplication("ConcatenateImages")
    ConcatenateImages.SetParameterStringList("il", bands_text)
    ConcatenateImages.SetParameterString("out", str(out_tif))
    ConcatenateImages.UpdateParameters()
    ConcatenateImages.ExecuteAndWriteOutput()
    print('Done')


def dtm_addition(location, out_band, resolution = 60):
    '''
    Create the adapted Digital Terrain Model
    From the original one, change its resolution
    '''
    paths_configuration = json.load(open(op.join('..', 'paths_configuration.json')))
    tile = paths_configuration["tile_location"][location]
    
    original_DTM_dir = paths_configuration["global_chains_paths"]["DTM_input"]
    resized_DTM_dir = paths_configuration["global_chains_paths"]["DTM_resized"]
    if not op.exists(resized_DTM_dir):
        os.makedirs(resized_DTM_dir)
        print(resized_DTM_dir + ' created')
    
    original_DTM_path = glob.glob(op.join(original_DTM_dir, ('*' + tile + '*'), '*.DBL.DIR', '*_ALT_R2.TIF'))[0]
    resized_DTM_path = op.join(resized_DTM_dir, ('{}_{}_DTM_{}m.tif'.format(location, tile, resolution)))
    
    # do the resizing only if the file has not been computed previously
    if not op.exists(resized_DTM_path):
        pixelresX = resolution
        pixelresY = resolution
        resize_band(original_DTM_path, resized_DTM_path, pixelresX, pixelresY)
        
    shutil.copy(resized_DTM_path, out_band)
    
    

def resize_band(in_band, out_band, pixelresX, pixelresY):
    '''
    Resize a band with the given resolution (in meters)
    '''
    if op.exists(out_band):
        os.remove(out_band)
    build_warp = 'gdalwarp -tr {} {} {} {} '.format(pixelresX, pixelresY, in_band, out_band)
    os.system(build_warp)
    

def create_image_compositions(global_parameters, location, current_date, heavy = False, force = False):
    #
    potential_final_tif = op.join(global_parameters["user_choices"]["main_dir"], 
                        'In_data', 'Image', global_parameters["user_choices"]["raw_img"])
                        
    if op.exists(potential_final_tif) and force == False:
        print('TIF already present, use -force to erase and replace')
        return
    
    
    # get the directory of the bands
    bands_dir, band_prefix, date = find_directory_names.get_L1C_dir(location, current_date, display = True)
    # --------------------------------------------
    # ------ Low resolution TIF with all the bands
    # Preparation
    resolution = 60
    out_dir_bands = op.join(global_parameters["user_choices"]["main_dir"], 'Intermediate')

    additional_bands = []
    
    # Create new indices if needed
    new_indices = global_parameters["features"]["special_indices"]
    for indice in new_indices:
        out_tif = op.join(out_dir_bands, (indice + '.tif'))
        create_specific_indices(bands_dir, out_tif, indice_name = indice, resolution = resolution)
        additional_bands.append(str(out_tif))

    # Create the ratios
    ratios = create_ratio_bands(global_parameters, bands_dir, out_dir_bands, resolution = 60)
    additional_bands.extend(ratios)
  
    use_DTM = str2bool(global_parameters["features"]["DTM"])
    if use_DTM:
        # Append the DTM model
        out_dtm = op.join(out_dir_bands, ('DTM.tif'))
        # try to append it. If an error occurs, the DTM probably does not exist
        # and we will therefore skip this band
        try:
            dtm_addition(location, out_dtm, resolution = resolution)
            additional_bands.append(str(out_dtm))
        except:
            print('ERROR : THE DTM DOES NOT EXIST !!!')
        
        
    create_textures = str2bool(global_parameters["features"]["textures"])    
    # Create the texture features
    if create_textures:
        band_used_for_contours = 2
        in_tif = glob.glob(op.join(bands_dir, '*{}*{:02}.jp2'.format(band_prefix, band_used_for_contours)))[0]   
        in_channel = 1
        
        out_tif = op.join(out_dir_bands, 'density_contours.tif')
        create_contours_density(in_tif, in_channel, out_tif, radius = 3)
        additional_bands.append(str(out_tif))
        out_tif = op.join(out_dir_bands, 'variation_coeff.tif')    
        create_variation_coeff(in_tif, in_channel, out_tif, radius = 3) 
        additional_bands.append(str(out_tif))
    
    
        

    # Create time difference features
    bands_num = [int(band) for band in global_parameters["features"]["time_difference_bands"]]
    out_dir_bands = op.join(global_parameters["user_choices"]["main_dir"], 'Intermediate')
    for band_num in bands_num:
        out_tif = op.join(out_dir_bands, ('time_' + str(band_num) + '.tif'))
        create_time_difference_band(global_parameters, band_num, out_tif, resolution = resolution)
        additional_bands.append(str(out_tif))


    # --- Create the main TIF with low resolution
    # create intermediate resolution files
    intermediate_bands_dir = op.join(global_parameters["user_choices"]["main_dir"], 'Intermediate')
    pixelresX = resolution
    pixelresY = resolution
    
    # takes all the cloudy date bands
    bands_num = [int(band) for band in global_parameters["features"]["original_bands"]]

    intermediate_sizes_paths = []
    for band in bands_num:
        in_band = str(op.join(bands_dir, band_prefix)+ '{:02d}'.format(band)+'.jp2')
        out_band = op.join(intermediate_bands_dir, op.basename(in_band)[0:-4]+'.tif')

        resize_band(in_band, out_band, pixelresX, pixelresY)
        intermediate_sizes_paths.append(out_band)
    
    out_all_bands_tif = op.join(global_parameters["user_choices"]["main_dir"], 
                            'In_data', 'Image', global_parameters["user_choices"]["raw_img"])
    
    # add all the additional bands after the ones of the cloudy dates
    intermediate_sizes_paths.extend(additional_bands)
    intermediate_sizes_paths = [str(i) for i in intermediate_sizes_paths]
    
    # create the concatenated TIF
    compose_bands_heavy(intermediate_sizes_paths, str(out_all_bands_tif))



    # --------------------------------------------
    # ---- High resolution TIF with some bands only
    # same working principle but with different resolution


    resolution = 20
    # Create the heavy TIF if requested
    if heavy == True:
        # Create new indices if wanted
        new_indices = ['NDVI', 'NDWI']
        out_dir_bands = op.join(global_parameters["user_choices"]["main_dir"], 'Intermediate')
        additional_bands = []
        for indice in new_indices:
            out_tif = op.join(out_dir_bands, (indice + '.tif'))
            create_specific_indices(bands_dir, out_tif, indice_name = indice, resolution = resolution)
            additional_bands.append(str(out_tif))


        # create intermediate resolution files
        intermediate_bands_dir = op.join(global_parameters["user_choices"]["main_dir"], 'Intermediate')
        pixelresX = resolution
        pixelresY = resolution
        
        # The bands to put into the heavy file
        bands_num = [2,3,4,10]

        intermediate_sizes_paths = []
        for band in bands_num:
            in_band = str(op.join(bands_dir, band_prefix)+ '{:02d}'.format(band)+'.jp2')
            out_band = op.join(intermediate_bands_dir, op.basename(in_band)[0:-4]+'.tif')

            resize_band(in_band, out_band, pixelresX, pixelresY)
            intermediate_sizes_paths.append(out_band)
        
        out_heavy_tif = op.join(global_parameters["user_choices"]["main_dir"], 'In_data', 'Image', global_parameters["user_choices"]["raw_img"])[0:-4]+'_H.tif'
        
        intermediate_sizes_paths.extend(additional_bands)
        intermediate_sizes_paths = [str(i) for i in intermediate_sizes_paths]
        compose_bands_heavy(intermediate_sizes_paths, str(out_heavy_tif))

    return 
    


def create_no_data_tif(global_parameters, out_tif, dilation_radius = 10):
    '''
    Create the no_data TIF using both the clear and cloudy date.
    Used in the 'layers_creation.create_no_data_shp'
    '''
    location = global_parameters["user_choices"]["location"]
    current_date = global_parameters["user_choices"]["current_date"]
    clear_date = global_parameters["user_choices"]["clear_date"]
    
    current_dir, current_band_prefix, current_date = find_directory_names.get_L1C_dir(location, current_date, display = False)
    clear_dir, clear_band_prefix, clear_date = find_directory_names.get_L1C_dir(location, clear_date, display = False)

    # Band number, the 10 is 60m resolution, change it if
    # other resolution is wanted
    #~ band_num_str = '{:02d}'.format(10)
    band_num_str = '{:02d}'.format(1)
    
    cloudy_band = glob.glob(op.join(current_dir, (current_band_prefix + band_num_str + '.jp2')))[0]
    clear_band = glob.glob(op.join(clear_dir, (clear_band_prefix + band_num_str + '.jp2')))[0]
        
    # Selection of the no_data pixels    
    BandMathX = otbApplication.Registry.CreateApplication("BandMathX")
    BandMathX.SetParameterStringList("il", [str(cloudy_band), str(clear_band)])
    expression = "(im1b1 <= 0 or im2b1 <= 0) ? 1 : 0"
    BandMathX.SetParameterString("exp", expression)
    BandMathX.UpdateParameters()
    BandMathX.Execute()    
    # Dilatation of the zones, to have some margin. radius in pixels
    Dilatation = otbApplication.Registry.CreateApplication("BinaryMorphologicalOperation")
    Dilatation.SetParameterInputImage("in",BandMathX.GetParameterOutputImage("out"))
    Dilatation.SetParameterString("out", str(out_tif))
    Dilatation.SetParameterString("filter","dilate")
    Dilatation.SetParameterInt("structype.ball.xradius", dilation_radius)
    Dilatation.SetParameterInt("structype.ball.yradius", dilation_radius)
    Dilatation.UpdateParameters()
    Dilatation.ExecuteAndWriteOutput()

def str2bool(v):
    '''
    Converts a string to a boolean
    '''
    if v.lower() in ('yes', 'true', 't', 'y', '1'):
        return True
    elif v.lower() in ('no', 'false', 'f', 'n', '0'):
        return False
    else:
        raise argparse.ArgumentTypeError('Boolean value expected.') 
        
        

def main():
    global_parameters = json.load(open(op.join('parameters_files','global_parameters.json')))
    
    print(global_parameters["features"]["original_bands"])
    original_bands = [int(band) for band in global_parameters["features"]["original_bands"]]
    time_difference_bands = [int(band) for band in global_parameters["features"]["time_difference_bands"]]
    
    use_DTM = str2bool(global_parameters["features"]["DTM"])
    create_textures = str2bool(global_parameters["features"]["textures"])
    print(use_DTM == True)
    
    
    
    
    
    
    return
    
    out_tif = 'tmp/tmp_tif.tif'
    create_no_data_tif(global_parameters, out_tif, resolution = 60)
    
    return
    location = 'Orleans'
    out_band = 'otrlean.tif'
    dtm_addition(location, out_band)
    
    return
    
    
    #~ create_image_compositions(global_parameters)
    
    #~ day = '20'
    #~ month = '05'
    #~ year = '2017'
    current_date = '20170520'
    location = 'Pretoria'
    
    create_image_compositions(global_parameters, location, current_date, heavy = False)
    
    return
    
    bands_dir, band_prefix, date = find_directory_names.get_L1C_dir(location, current_date, display = True)

    bands_num = [8,10]

    # get the full paths
    bands_full_paths = []
    for band in bands_num:
        bands_full_paths.append(str(op.join(bands_dir, band_prefix)+ '{:02d}'.format(band)+'.jp2'))
    
    out_tif = 'tmp/NDVI.tif'    
        
    #~ create_composit_band(bands_full_paths, out_tif, composit_type = 'ND')
    
    in_bands_dir = bands_dir
    
    create_specific_indices(in_bands_dir, out_tif, indice_name = 'NDVI', resolution = 60)
    
    
    return    
        
    in_bands = ['/mnt/data/home/baetensl/classification_clouds/Data/TestBands/B02.jp2', '/mnt/data/home/baetensl/classification_clouds/Data/TestBands/B03.jp2']
    
    in_band = '/mnt/data/home/baetensl/classification_clouds/Data/TestBands/compos.jp2'
    out_band = '/mnt/data/home/baetensl/classification_clouds/Data/TestBands/compos_res.jp2'

    pixelresX = 100
    pixelresY = 300
    resize_band(in_band, out_band, pixelresX, pixelresY)
    
    pixelX = 500
    pixelY = 500

    #~ compose_bands_gdal(in_bands, out_band, pixelX, pixelY)

    
if __name__=='__main__':
    main()