metrics_exploitation.py 23.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
#!/usr/bin/python
# -*- coding: utf-8 -*-

import json
import csv
import os.path as op
from pprint import pprint
import numpy as np
import os
import shutil
import matplotlib.pyplot as plt
import glob
import random
from matplotlib.lines import Line2D

def matrix_loading(confusion_matrix_path):
    ''' Loads the matrix given its path, and returns
    the confusion matrix along with the classes names
    '''
    
    # loads the data
    datafile = open(confusion_matrix_path, 'r')
    lines = datafile.readlines()
    datafile.close()
    lines = [l.replace('\n', '') for l in lines]
    
    headers = lines[0:2]
    data = lines[2:]
    
    # Get the references classes
    classes_ref = headers[0].split(':')[1].split(',')
    classes_ref = [int(c) for c in classes_ref]
    
    # Get the produced classes
    classes_produced = headers[1].split(':')[1].split(',')
    classes_produced = [int(c) for c in classes_produced]
    
    print(classes_ref)
    print(classes_produced)
    
    # Get the data and shapes the array, while converting to int
    confusion_matrix_original = []
    for row in data:
        confusion_matrix_original.append([int(r) for r in row.split(',')])
    
    # To make the confusion matrix square, i.e. if some classes are
    # missing in the referenced or produced data :
    classes_all = list(set(classes_ref + classes_produced))
    nb_class = len(classes_all)
    
    print('Classes: {}'.format(classes_all))
    
    
    conf_mat = np.zeros((nb_class, nb_class), float)
    
    
    for i in range(nb_class):
        for j in range(nb_class):
            I = None
            J = None
            try:
                I = classes_ref.index(classes_all[i])
                J = classes_produced.index(classes_all[j])
            except:
                I = None
                J = None
            if I != None and J != None:
                conf_mat[i][j] = confusion_matrix_original[I][J]

    print('Confusion matrix:')
    pprint(conf_mat)
                
    return classes_all, conf_mat

    
def multiclass_stats(confusion_matrix_path):
    ''' Return the percentage of well and mis classified samples from 
    the confusion matrix
    '''
    classes, cm = matrix_loading(confusion_matrix_path)
    nb_classes = len(classes)
    
    diag = 0
    non_diag = 0
    for k in range(nb_classes):
        diag += cm[k][k]
        non_diag += sum(cm[k])-cm[k][k]
    total_samples = diag + non_diag
    
    well_classified = float(diag)/float(total_samples)
    ill_classified = float(non_diag)/float(total_samples)
    
    print('Mean of well classified samples on all classes: {:.2f} %'.format(well_classified*100))
    print('Mean of misclassified samples on all classes: {:.2f} %'.format(ill_classified*100))
    
    return well_classified, ill_classified
    
def get_binary_classes(global_parameters):
    ''' Get the classes corresponding to clouds or not clouds class
    '''    
    clouds_classes = []
    not_clouds_classes = []
    
    clouds_classes.append(int(global_parameters["masks"]["low_clouds"]["class"]))
    clouds_classes.append(int(global_parameters["masks"]["high_clouds"]["class"]))
    clouds_classes.append(int(global_parameters["masks"]["clouds_shadows"]["class"]))
        
    not_clouds_classes.append(int(global_parameters["masks"]["background"]["class"]))
    not_clouds_classes.append(int(global_parameters["masks"]["land"]["class"]))
    not_clouds_classes.append(int(global_parameters["masks"]["water"]["class"]))
    not_clouds_classes.append(int(global_parameters["masks"]["snow"]["class"]))
        
    return clouds_classes, not_clouds_classes
    
    
def multi_to_binary_confusion_matrix(global_parameters, confusion_matrix_path):
    ''' Transform a multiclass confusion matrix to a binary one,
    allowing the computation of metrics such as accuracy or F1 score
    '''
    clouds_classes, not_clouds_classes = get_binary_classes(global_parameters)
    
    classes, cm = matrix_loading(confusion_matrix_path)
    nb_classes = len(classes)

    FNs = []
    FPs = []
    TPs = []
    TNs = []
    
    for i in range(nb_classes):
        for j in range(nb_classes):
            if classes[i] in clouds_classes and classes[j] in clouds_classes:
                TPs.append(cm[i][j])
            if classes[i] in not_clouds_classes and classes[j] in not_clouds_classes:
                TNs.append(cm[i][j])    
            if classes[i] in clouds_classes and classes[j] in not_clouds_classes:
                FNs.append(cm[i][j])
            if classes[i] in not_clouds_classes and classes[j] in clouds_classes:
                FPs.append(cm[i][j])
    
    TN = float(sum(TNs))
    TP = float(sum(TPs))
    FP = float(sum(FPs))
    FN = float(sum(FNs))

    print('Binary confusion matrix:')
    print('{:10}'.format(TP) + ' | ' + '{:10}'.format(FP) + 
    '\n --------------------\n' + '{:10}'.format(FN) + ' | ' + '{:10}'.format(TN))

    bin_conf_mat = [[TP, FN], [FP, TN]]
    
    return bin_conf_mat
    
    
def binary_stats(bin_conf_mat, all_stats = False):
    ''' Compute the metrics from a binary confusion matrix
    '''
    
    TP = bin_conf_mat[0][0] #true positive
    FN = bin_conf_mat[0][1] #false negative
    FP = bin_conf_mat[1][0] #false positive
    TN = bin_conf_mat[1][1] #true negative
    
    
    accuracy = (TP+TN)/(TP+TN+FP+FN)
    if TP+FP == 0:
        precision = 1
    else:
        precision = (TP)/(TP+FP)
    if TP+FN == 0:
        recall = 1
    else:
        recall = (TP)/(TP+FN)
    if TN+FP == 0:    
        specificity = 1
    else: 
        specificity = (TN)/(TN+FP)
    f1_score = 2*(precision*recall)/(precision+recall)
    
    print('Accuracy: {:.2f} %'.format(accuracy*100))
    print('F1 Score: {:.2f} %'.format(f1_score*100))
    
    print('(Precision: {:.2f} %)'.format(precision*100))
    print('(Recall: {:.2f} %)'.format(recall*100))
    print('(Specificity: {:.2f} %)'.format(specificity*100))
    
    if all_stats == False:
        return accuracy, f1_score
        
    else:
        return accuracy, f1_score, precision, recall, specificity

def get_model_metrics(global_parameters, confusion_matrix_path = '', write2file = True):
    ''' Pack all the function to display the metrics of a model
    If a specific confusion matrix path is not given, it takes the 
    current one
    '''
    
    if confusion_matrix_path == '':
        main_dir = global_parameters["user_choices"]["main_dir"]
        confusion_matrix_path = op.join(main_dir, 'Statistics', global_parameters["postprocessing"]["confusion_matrix"])
    
    
    multiclass_stats(confusion_matrix_path)
    bin_conf_mat = multi_to_binary_confusion_matrix(global_parameters, confusion_matrix_path)
    #~ accuracy, f1_score = binary_stats(bin_conf_mat, all_stats = False)
    accuracy, f1_score, precision, recall, specificity = binary_stats(bin_conf_mat, all_stats = True)
    
    if write2file == True:
        statistics_dir = op.join(main_dir, 'Statistics')
        bin_conf_csv = op.join(statistics_dir, global_parameters["postprocessing"]["binary_confusion_matrix"])
        model_metrics_csv = op.join(statistics_dir, global_parameters["postprocessing"]["model_metrics"])
        
        # write the binary confusion matrix
        with open(bin_conf_csv, 'w') as csvfile:
            spamwriter = csv.writer(csvfile, delimiter=',')
            spamwriter.writerows(bin_conf_mat)
        
        # write the model metrics
        with open(model_metrics_csv, 'w') as csvfile:
            spamwriter = csv.writer(csvfile, delimiter=',')
            spamwriter.writerow(['accuracy', accuracy])
            spamwriter.writerow(['f1_score', f1_score])
            spamwriter.writerow(['precision', precision])
            spamwriter.writerow(['recall', recall])
            spamwriter.writerow(['specificity', specificity])

    return accuracy, f1_score
    
def save_model_metrics(global_parameters):
    '''
    Save the model metrics for the current training and validation sets.
    
    Used for the K-fold cross validation for example
    '''
    # create the save folder
    main_dir = global_parameters["user_choices"]["main_dir"]
    statistics_dir = op.join(main_dir, 'Statistics')
    
    k = 0
    while op.exists(op.join(statistics_dir, 'K_fold_{}'.format(k))):
        k += 1
    K_fold_dir = op.join(statistics_dir, 'K_fold_{}'.format(k))    
    os.makedirs(K_fold_dir)
    print('K_fold_{} directory created'.format(k))    
    
    # copy the interesting files into it
    files_of_interest = []
    src_dirs = []


    #~ src_dirs.append(statistics_dir)
    #~ files_of_interest.append(global_parameters["postprocessing"]["confusion_matrix"])
    #~ src_dirs.append(statistics_dir)
    #~ files_of_interest.append(global_parameters["postprocessing"]["binary_confusion_matrix"])
    #~ src_dirs.append(statistics_dir)
    #~ files_of_interest.append(global_parameters["postprocessing"]["model_metrics"])
    #~ src_dirs.append(statistics_dir)
    
    for interesting_param in ["confusion_matrix", "binary_confusion_matrix", "model_metrics"]:
        src_dirs.append(statistics_dir)
        files_of_interest.append(global_parameters["postprocessing"][interesting_param])
            
    files_of_interest.append(global_parameters["general"]["class_stats"])
    src_dirs.append(statistics_dir)

    for n in range(len(files_of_interest)):
        file_name = files_of_interest[n]
        src_dir = src_dirs[n]
        src = op.join(src_dir, file_name)
        dst = op.join(K_fold_dir, file_name)
        if op.exists(src):
            shutil.copyfile(src, dst)

    
    samples_dir = op.join(main_dir, 'Intermediate')
    samples_files = []
    
    samples_files.append(global_parameters["general"]["validation_shp"])
    samples_files.append(global_parameters["general"]["training_shp"])
    
    samples_files = [op.join(samples_dir, s) for s in samples_files]
    
    for valid_f in samples_files:
        # get the extension of the file
        _, extension = op.splitext(valid_f)
        src_basename, _ = op.splitext(valid_f)
        all_src = glob.glob(src_basename + '*')

        for src in all_src:
            if not '_ext' in op.basename(src):
                dst = op.join(K_fold_dir, op.basename(src))
                shutil.copy(src, dst)    
    




    
    
def retrieve_Kfold_data(global_parameters, metrics_plotting = False, location = '', date = ''):
    '''
    After having run the model K times, this function is used to do some
    stats on all the runs
    '''    
    if location != '' and date != '':
        paths_configuration = json.load(open(op.join('..', 'paths_configuration.json')))
        Data_ALCD_dir = paths_configuration["data_paths"]["data_alcd"]
        main_dir = glob.glob(op.join(Data_ALCD_dir, '{}_*_{}'.format(location, date)))[0]

    else:    
        main_dir = global_parameters["user_choices"]["main_dir"]
        location = global_parameters["user_choices"]["location"]
        date = global_parameters["user_choices"]["current_date"]        
    statistics_dir = op.join(main_dir, 'Statistics')
    model_metrics_csv_basename = op.join(global_parameters["postprocessing"]["model_metrics"])
    
    model_metrics_iter_files = []
    k = 0
    while op.exists(op.join(statistics_dir, 'K_fold_{}'.format(k))):
        model_k_file = op.join(statistics_dir, 'K_fold_{}'.format(k), model_metrics_csv_basename)
        model_metrics_iter_files.append(model_k_file)
        k += 1
        
    all_metrics = []
    for k_file in model_metrics_iter_files:
        current_metrics = []
        metrics_names = []
        with open(k_file, 'r') as csvfile:
            spamreader = csv.reader(csvfile, delimiter=',')
            for row in spamreader:
                metrics_names.append(row[0])
                current_metrics.append(float(row[1]))
        all_metrics.append(current_metrics)
    #~ print(all_metrics)
    # Compute the mean and standard deviation for each metric
    means = np.mean(all_metrics, axis = 0)
    stds = np.std(all_metrics, axis = 0)
    
    # save the stats
    out_json = op.join(statistics_dir, 'k_fold_summary.json')
    data = {}
    data["means"] = list(means)
    data["stds"] = list(stds)
    data["metrics_names"] = metrics_names
    data["all_metrics"] = all_metrics
    data["K"] = len(all_metrics)
    
    jsonFile = open(out_json, "w+")
    jsonFile.write(json.dumps(data, indent=3, sort_keys=True))
    jsonFile.close() 
    
    
    if metrics_plotting:    
        indices = [0,1,2,3]
        accuracies = [m[0] for m in all_metrics]
        f1scores = [m[1] for m in all_metrics]
        recalls = [m[2] for m in all_metrics]
        precisions = [m[3] for m in all_metrics]


        plt.errorbar(indices, means[0:4], stds[0:4], linestyle='', 
                marker='o', color = 'b')        
        met_nb = 0

        for metric in [accuracies, f1scores, recalls, precisions]:
            rnd = [(indices[met_nb] - 0.1 + 0.2*(float(k)/len(accuracies))) for k in range(len(accuracies))]
            plt.scatter(rnd, metric, color='k', marker='.', alpha = 0.2)
            met_nb += 1
            
        plt.ylim(0.5,1)
        metrics_names = ['Accuracy\n{:.1f}%'.format(means[0]*100), 
        'F1-score\n{:.1f}%'.format(means[1]*100), 
        'Recall\n{:.1f}%'.format(means[2]*100),
        'Precision\n{:.1f}%'.format(means[3]*100)]
        plt.xticks(indices, metrics_names)
        
        nb_dates = float(len(accuracies))/11
        plt.title('Metrics of a {}-fold random cross-validation\n{}, {}'.format(len(accuracies), location, date))
        plt.xlabel('Score type')
        plt.ylabel('Scores')   
        
            # Custom legend
        custom_lines = []
        custom_lines.append(Line2D([0], [0], color='w', markerfacecolor = 'k', marker='.', alpha = 0.2))
        custom_lines.append(Line2D([0], [0], color='w', markerfacecolor = 'b', marker='o', alpha = 1))
        legend_labels = ['Single fold point', 'Mean and std of all folds']
        plt.legend(custom_lines, legend_labels, bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)    
        
        #~ plt.show()
        
        out_fig = op.join(statistics_dir, 'kfold_metrics.png')
        plt.savefig(out_fig, bbox_inches='tight')
        #~ plt.close()
        
    
    return means, stds, all_metrics



def load_previous_global_parameters(location, date):
    paths_configuration = json.load(open(op.join('..', 'paths_configuration.json')))
    Data_ALCD_dir = paths_configuration["data_paths"]["data_alcd"]
    
    main_dir_path = glob.glob(op.join(Data_ALCD_dir, '{}_*_{}'.format(location, date)))[0]
    glo_param_path = op.join(main_dir_path, 'In_data', 'used_global_parameters.json')
    global_parameters = json.load(open(glo_param_path))
    
    return global_parameters
    
        
def get_all_locations_dates(csv_file):
    locations = []
    clear_dates = []
    cloudy_dates = []
    with open(csv_file, 'rb') as f:
        reader = csv.reader(f)
        headers = next(reader, None) #skip the headers
        for row in reader:
            locations.append(row[0])
            clear_dates.append(row[1])
            cloudy_dates.append(row[2])
    return locations, clear_dates, cloudy_dates        
    

def plot_statistics_all_sites():    
    global_parameters = json.load(open(op.join('parameters_files','global_parameters.json')))
    #~ csv_file = op.join('tmp', 'all_sites_dates.csv')
    csv_file = op.join('/mnt/data/home/baetensl/clouds_detection_git/Various_data', 'all_sites_dates.csv')
    locations, _, dates = get_all_locations_dates(csv_file)
    

    all_metrics = []
    
    low_accuracies = []
    low_accuracies_scenes = []
    
    for j in range(len(locations)):
        location = locations[j]
        date = dates[j]        

        try:
            _, _, temp_metrics = retrieve_Kfold_data(global_parameters, metrics_plotting = False, location = location, date = date)
            all_metrics.extend(temp_metrics)
            accuracies_tmp = [t[0] for t in temp_metrics]

            if any(a < 0.9 for a in accuracies_tmp):
                low_accuracies.append(accuracies_tmp)
                low_accuracies_scenes.append((location + date))
            print('{}_{}, min : {}'.format(location, date, np.min(accuracies_tmp)))    
                
        except:
            print('Error on {}, {}'.format(location, date))

    print(len(all_metrics))
    
    means = np.mean(all_metrics, axis = 0)
    stds = np.std(all_metrics, axis = 0)
    print('Means')
    print(means)
    print('Standard deviations')
    print(stds)        
    
    plt.figure()
    indices = [0,1,2,3]
    accuracies = [m[0] for m in all_metrics]
    f1scores = [m[1] for m in all_metrics]
    recalls = [m[2] for m in all_metrics]
    precisions = [m[3] for m in all_metrics]
    
    met_nb = 0
    for metric in [accuracies, f1scores, recalls, precisions]:
        
        rnd = [(indices[met_nb] - 0.1 + 0.2*(float(k)/len(accuracies))) for k in range(len(accuracies))]
        plt.scatter(rnd, metric, color='k', marker='.', alpha = 0.2)
        met_nb += 1
    plt.errorbar(indices, means[0:4], stds[0:4], linestyle='', 
            marker='o', lw=2, elinewidth = 2, capsize = 8, capthick = 1, color = 'b')
    plt.ylim(0.5,1)
    
    metrics_names = ['Accuracy\n{:.1f}%'.format(means[0]*100), 
    'F1-score\n{:.1f}%'.format(means[1]*100), 
    'Recall\n{:.1f}%'.format(means[2]*100),
    'Precision\n{:.1f}%'.format(means[3]*100)]
    plt.xticks(indices, metrics_names)
    
    nb_dates = float(len(accuracies))/11
    plt.title('Metrics of a 10-fold cross-validation \n on {:.0f} scenes'.format(len(locations)))
    plt.xlabel('Score type')
    plt.ylabel('Scores')
    
    
    # Custom legend
    custom_lines = []
    custom_lines.append(Line2D([0], [0], color='w', markerfacecolor = 'k', marker='.', alpha = 0.2))
    custom_lines.append(Line2D([0], [0], color='w', markerfacecolor = 'b', marker='o', alpha = 1))
    legend_labels = ['Single validation point', 'Mean and std of all sites']
    plt.legend(custom_lines, legend_labels, bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)    
        
    plt.show(block=False)
    
    out_fig = op.join('tmp_report', 'kfold_synthese.png')
    print('Figure saved in {}'.format(out_fig))
    plt.savefig(out_fig, bbox_inches='tight')
    plt.close()
    print('Scenes with low accuracies:')
    print(low_accuracies_scenes)
    
    
    
    

def plot_mean_statistics_all_sites(plot_both = True):    
    global_parameters = json.load(open(op.join('parameters_files','global_parameters.json')))
    csv_file = op.join('/mnt/data/home/baetensl/clouds_detection_git/Various_data', 'all_sites_dates.csv')
    locations, _, dates = get_all_locations_dates(csv_file)
    

    all_metrics = []
    
    accuracies = []
    f1scores = []
    scenes_names = []

    
    for j in range(len(locations)):
        location = locations[j]
        date = dates[j]        

        try:
            _, _, temp_metrics = retrieve_Kfold_data(global_parameters, metrics_plotting = False, location = location, date = date)
            all_metrics.extend(temp_metrics)
            
            accuracies.append([[m[0] for m in temp_metrics]])
            f1scores.append([[m[1] for m in temp_metrics]])
            scenes_names.append('{}_{}'.format(location, date))
            
      
        except:
            print('Error on {}, {}'.format(location, date))



    acc_means = [np.mean(a) for a in accuracies]   
    acc_stds = [np.std(a) for a in accuracies]   
    f1_means = [np.mean(f) for f in f1scores]   
    f1_stds = [np.std(f) for f in f1scores]   

    
    x_positions = range(len(acc_means))
    acc_positions = [x-0.1 for x in x_positions]
    f1_positions = [x+0.1 for x in x_positions]
    

    plt.figure()
    if plot_both:
        plt.errorbar(acc_positions, acc_means, acc_stds, linestyle='', 
                marker='o', lw=1, elinewidth = 1, capsize = 3, capthick = 1, color = 'b')
        plt.errorbar(f1_positions, f1_means, f1_stds, linestyle='', 
                marker='o', lw=1, elinewidth = 1, capsize = 3, capthick = 1, color = 'g')            

        #~ plt.title('Metrics of a 10-fold cross-validation \n on {:.0f} scenes'.format(len(acc_means)))
        
        # Custom legend
        custom_lines = []
        custom_lines.append(Line2D([0], [0], color='w', markerfacecolor = 'b', marker='o', alpha = 1))
        custom_lines.append(Line2D([0], [0], color='w', markerfacecolor = 'g', marker='o', alpha = 1))
        legend_labels = ['Accuracy', 'F1-score']
        #~ plt.legend(custom_lines, legend_labels, bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)      
        plt.legend(custom_lines, legend_labels, loc=0)      
        
    else:
        plt.errorbar(x_positions, acc_means, acc_stds, linestyle='', 
                marker='o', lw=1, elinewidth = 1, capsize = 3, capthick = 1, color = 'b')           
  
        plt.xlim(min(acc_positions)-0.2, max(f1_positions)+0.2)    

        plt.title('Mean accuracies of a 10-fold cross-validation \n on {:.0f} scenes'.format(len(acc_means)))
        
        
    plt.xticks(x_positions, scenes_names, rotation = 'vertical')
    #~ plt.xlabel('Scene')
    plt.ylabel('Scores')    

    plt.ylim(0.7,1.0)    
    plt.xlim(min(x_positions)-0.4, max(f1_positions)+0.4) 
  
    
    plt.show(block=False)
    
    out_fig = op.join('tmp_report', 'kfold_synthese_mean.png')
    print('Figure saved in {}'.format(out_fig))
    plt.savefig(out_fig, bbox_inches='tight')
    plt.close()
    return      
    
    
    
    #~ plt.figure()
    #~ indices = [0,1,2,3]
    #~ accuracies = [m[0] for m in all_metrics]
    #~ f1scores = [m[1] for m in all_metrics]
    #~ recalls = [m[2] for m in all_metrics]
    #~ precisions = [m[3] for m in all_metrics]
    
    #~ print(len(accuracies))
    #~ return
    
    #~ met_nb = 0
    #~ for metric in [accuracies, f1scores, recalls, precisions]:
        
        #~ rnd = [(indices[met_nb] - 0.1 + 0.2*(float(k)/len(accuracies))) for k in range(len(accuracies))]
        #~ plt.scatter(rnd, metric, color='k', marker='.', alpha = 0.2)
        #~ met_nb += 1
    #~ plt.errorbar(indices, means[0:4], stds[0:4], linestyle='', 
            #~ marker='o', lw=2, elinewidth = 2, capsize = 8, capthick = 1, color = 'b')
    #~ plt.ylim(0.5,1)
    
    #~ metrics_names = ['Accuracy\n{:.1f}%'.format(means[0]*100), 
    #~ 'F1-score\n{:.1f}%'.format(means[1]*100), 
    #~ 'Recall\n{:.1f}%'.format(means[2]*100),
    #~ 'Precision\n{:.1f}%'.format(means[3]*100)]
    #~ plt.xticks(indices, metrics_names)
    
    #~ nb_dates = float(len(accuracies))/11
    #~ plt.title('Metrics of a 10-fold cross-validation \n on {:.0f} scenes'.format(len(locations)))
    #~ plt.xlabel('Score type')
    #~ plt.ylabel('Scores')
    
    
    #~ # Custom legend
    #~ custom_lines = []
    #~ custom_lines.append(Line2D([0], [0], color='w', markerfacecolor = 'k', marker='.', alpha = 0.2))
    #~ custom_lines.append(Line2D([0], [0], color='w', markerfacecolor = 'b', marker='o', alpha = 1))
    #~ legend_labels = ['Single validation point', 'Mean and std of all sites']
    #~ plt.legend(custom_lines, legend_labels, bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)    
        
    #~ plt.show(block=False)
    
    #~ out_fig = op.join('tmp_report', 'kfold_synthese_mean.png')
    #~ print('Figure saved in {}'.format(out_fig))
    #~ plt.savefig(out_fig, bbox_inches='tight')
    #~ plt.close()
    
    
    
    
def main():
    #~ plot_mean_statistics_all_sites()
    #~ return
    #~ plot_statistics_all_sites()
    #~ return

    global_parameters = json.load(open(op.join('parameters_files','global_parameters.json')))
    retrieve_Kfold_data(global_parameters, metrics_plotting = True)
    
    #~ location = 'Arles'
    #~ date = 20171221
    #~ load_previous_global_parameters(location, date)
    

    
if __name__ == '__main__':
    main()